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The Use of INon~Euclidean Geometry in Measurements

of Periodically Loaded Transmission Lines*
R. L. KYHL~

Nfmmary—Tire propagation characteristics of periodically loaded

transmission lines can be deduced from impedance measurements

taken with a series of dlff erent terminating configurations in a man-

ner analogous to the “nodal shift” ]method of measuring microwave

junction characteristics. The non-Euclidean properties of impedance
transformations form a particularly simple approach for analyzing
measurements in the case of the loaded line.

1. INTRODUCTION

A

>TUM13E.R of techniques used in testing the disk-

loaded guide for the large Stanford linear elec-

tron accelerator are not only of interest to

workers with similar structures, but also provide an

interesting example of the use of the non-Euclidean

properties of impedance or reflection coefficient charts

which have been described b y Deschamps.2

The basic property to be used in this discussion is

that one can define a non-Euclidean geometry on the set

of reflection coefficients or impedances, such that trans-

formation through a nondissipative two-terminal-pair

network constitutes a rigid displacement in this geome-

try. This concept is of general use in network problems,

as illustrated in footnote reference 2. The ideas pre-

sented are valid for the interpretation of measurements

made at a single frequency. No attempt is made to dis-

cuss frequency dependence. We shall plot our diagrams

on the conventional Smith chart. A few properties of

this representation are listed below. Let words in italics

represent the description in the non-Euclidean system.

Deschamps uses the adjective “hyperbolic” to denote

quantities in this system. Straight lines are circles or-

thogonal to the edge of the chart. Circles are circles

but with the center displaced from the Euclidean center.

The unit of length is proportional to the logarithm of the

voltage standing-wave ratio in the following sense: the

distance between the center of the Smith chart and a

given point is half the logarithm of the vswr (voltage

standing-wave ratio) at the point in question; the

distance between two poin[s is the value that would be

obtained by applying any rigid displacement which

moves one of the points to the center of the chart.
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Angles between intersecting st?aight lines are equid to

the angles between tangents at the point of intersection.

For a description of additional properties of this geome-

try, the reader is referred to the references. The treat-

ment used in this discussion is, from personal prefer-

ence, entirely geometric. Use k freely made of the

theorems of Euclid, care being taken not to use an>-

that depend on the parallel axiom.

Fig. l—Regular mosaic in a non Euclidean geometry.

Many ruler-and-compass constructions carry over

directly to the non-Euclidean systenn if practical

methods are available for drawing a st~aight line

through two $oints, and for drawing a circle with a given

center. Deschamps2 gives a usefu [ method for the former

which involves the ‘(projective-chart” as well as the

Smith-chart representation. In the work described in

the present contribution, the lines of constant reactance

on the printed Smith-chart were used as a set of French

curves for drawing straiglst lines in conjunction with a

tracing table. To draw circles use is made of the defini-

tion of distance. If a circle is to have its cente$’ at (vswr) o

and the radius is to be ~ in (vswr-) R, then the points on

the circle will have vswr values lying between (vswr) o X

(vswr) R and (vswr) o+- (vswr) R. The extremes will lie

on a Euclidean diameter of the Smith chart drawn

through the desired center. The two extremes al:;o lie

on a Euclidean diameter of the desired circle which

may now be drawn at once. In order to give a graphic

illustration of this geometry, Fig. 1 shows a mosaic pat-

tern of congruent triangles and regular heptagons.
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II. MEASUREMENTS ON PERIODICALLY LO.ADED LINES

Fig. 2 shows a typical experimental situation. The

coupling network is some device for connecting the

loaded line to an ordinary transmission line. The

measuring device is usually a probe and slotted section

for measuring standing-wave ratio in a transmission

line, but this is not essential to the argument; the same

considerations would apply to a completely lumped

network. The plunger can be used for terminating

the loaded line in various impedances, either purely re-

active or partly resistive, and generally unknown.
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Fig. 2—A diagram of a typical experimental setup.

Since it is possible to generate in periodic structures

waves which may be defined as ‘(pure traveling waves, ”

the entire structure of analysis developed for conven-

tional transmission lines can be taken over directly to

systems containing periodically loaded lines or com-

binations of these with ordinary lines, provided only

that some care is taken in the interpretations.

The purpose of an experiment may be to measure the

propagation constant of the loaded line, to check its uni-

formity, or to measure its characteristic impedance as

seen through the coupling network. The concept of

impedance and reflection coefficient in periodically

loaded transmission lines has been discussed by Slater3

and by ~aynes.~

II 1. GEOMETRIC ANALYSIS

The rigid displacement corresponding to the trans-

formation through one period (one disk) of the loaded

line will have one fixed point at the characteristic im-

pedance ZO of the structure. Within the pass band of

the structure the characteristic impedance will lie

inside the Smith chart (rather than at injiwity). The

only possible displacement is then a rotation about ZO.

Transformation through several sections must then

consist of a succession of rotations about the same point.

The total angle of rofafion will be IV19 where 19 is the

angle of rotation for a single period.

$ J. C. Slater, “Microwave Electronics, ” D. Van Nostrand and
Co., Inc., New York, N. Y., ch. 7; 1950.

t E. T. Jaynes, “The concept and measurement of impedance in
periodically loaded waveguides, ” J. AfiP1. Pkys., VO1. 23, p. 1077;
October, 1952.

If we plot with ZO at the center of the Smith chart the

rotation will appear Euclidean. Consider the experiment

consisting in the placing of a purely reactive, totally re-

flecting termination successively in equivalent positions

in cavities a, b, c, d, . . . of the loaded line. The resulting

impedances as seen, for example, in cavity a and plotted

on a Smith chart normalized to the characteristic im-

pedance of the loaded line must appear as in Fig. 3

(though it is not yet clear from the discussion whether

it is possible to make such measurements). Here @ is

the phase shift per section in the line. Since the plunger

is purely reactive the reflection coefficient has unit

amplitude and all points lie on the edge of the chart

if there are no losses present. (Loss in the structure will

be considered later.) The factor 2 in 24 is the usual one

found on Smith-chart plots.

Fig. 3—Unclosed re.gdar polygon with center at center
of chart, sides of infinite length.

We may now ask what will be observed by an actual

impedance measurement made through a non-lossy

coupling network such as in Fig. 2. The plunger is again

to be purely reactive as in the previous paragraph.

First suppose the coupling network exactly matches

the loaded line to the uniform line. This means by defi-

nition that 20 of the loaded line falls at the center of

the Smith chart. It follows at once that we must again

observe exactly Fig. 3 except for an arbitrary rigid

~otation. In general, however, the coupling will not be

matched. The observed points will fall in the manner

indicated in Fig. 4. The first step in interpreting the

measurements is to determine the position of ZO.

Connect points b, G, d, e, . . . with straight Lines. These

form a regulav polygon (unclosed) in the sense that all

vertices are equivalent and all sides are equivalent. It

can be readily seen that it must be a regular polygon

in Fig. 3. Since Fig. 4 represents a rigid displacement

of Fig. 3, the figure must still be a regular polygon. Or-

dinarily, location of the center of a regular polygon is

an elementary geometric construction. Unfortunately
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in this case the vertices are at in$nity, the vertex angles

are vanishingly small, and the sides have infinite length.5

We construct the straight lines (cZO and ZOd) which are

the loci of points equidistant from two adjacent sides of

the polygon. (It may not be at once clear how to per-

form such a construction, or even that the locus in ques-

tion is a straigkt line. Fortunatel}-j a simple construction

is available.) This may be done on the Smith chart by

superimposing the diagram on the printed Smith chart

so that the vertex under discussion falls at the point

Z = cc. The adjacent sides then lie on lines of constant

reactance X. The line of constant X = (Xl +X2)/2 is

the desired locus. The proof is left to an appendix.

Fig. 4—Unclosed regular polygon with center displaced from center of
chart. This figure is corzgrmzt to Fig. 3.

The intersection of all these loci determines the center

20 of the polygon. The reflection coefficient of the

coupling network can be read off directly from the posi-

tion of this center. Since we have already drawn the

lines connecting the center (of the Polygon with the ver-

tices, the angles 24 can be measured at once as the

angles formed by these lines at the center of the polygon.

If it should happen that point f falls upon point b as

in Fig. 5, then the Polygon reduces to a “square)’ and the

center of the polygon can be determined by drawing the

two diagonals. This is a special case of the type of nodal-

shifte measurement suggested by Deschampsz for use

with uniform lines. It can be used if the loaded line is

transmitting in exactly the 7r/4 or 3m/4 mode.

The 7r/2 mode is commonly used in traveling-wave

linear accelerators. The method just described breaks

5 If the reader is disturbed by a regdar polygon with vertices at
injidy he may consider this discussion as the limiting case of an
experiment in which the plunger has a slight loss.

e E. Feenberg, “The relation between nodal positions and stand-
ing wave ratio in a complete transmission system, ” Y. Appl. Pkys.,
vol. 1?, pp. 530–532; June, 1946 and N. Marcuvitz, “On the repre-
sentation and measurement of waveguide discontinuities, ” PROC.
IRE, vol. 36, pp. 728-735; June, ‘1948.

down at or near this point. Fig. 6 shows measurements

on a periodically loaded line very near the 7r/2 mode.

In order to determine the 20 point with precision a

second set of plunger positions can be m[easured giving

rise to points b’, c’, d’, e’, etc.

e
Fig. 5—.Sguare, showing method of loczting its

center by drawing the diagonals.

These points determine anc,ther polygon which is

also ce~zte~ed about 20. Unfortunately, in a disk-loaded

structure (at least if the coupling holes are small), there

is one set of points (say, b, c, d, e) which is insensitive to

plunger position and corresponds to successive com-

Fig. 6—Typical data obtained in a loaded line operating
near the 7r/2 mode.

plete detuning of the set of cavities. A]l other points

(like b’, c’, d’, e’) can be obtained only by positioning the

plunger in the transition region between successive

cavities with great precision. Fig. 6 indicates how the

location of Zo is determined.
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Another method of determining the location of ZO

which may give greater accuracy and is feasible near the

7/2 mode involves the use of a lossy plunger. The fvints

now fall inside the chart and the difficulties with points

at ifi$ndy disappear. The 20 $oint may be determined as

the intersection of the perpendicular bisectors of the sides

or bisectors of the vertex angles as seen in Fig. 7. Ordinary

‘“ruler-and-compass” constructions are suitable.

Fig. 7—Unclosed regular polygon constructed from data
obtained with 10SSY plunger.

This method does not break down at the 7r/2 mode.

It is not as accurate a method for measuring phase

angles. It has been used at Stanford in conjunction with

the totally reflecting plunger.7 By a little trial and

error, a Iossy plunger has been manufactured with a

vswr of less than 1.1 when placed appropriately in a

cavity of the large Stanford linear accelerator. With

such a plunger the ZO #oint can be located accurately by

inspection.

Another method of analyzing Iossy plunger data

consists of drawing a circle through the data points.

The points must fall on a circle because they form a

Yegular polygon. A circle is always also a circle in the

Euclidean plane so the construction can be made by

conventional methods. The center oj the circle coincides

with the center oj the polygon. Location of the center of a

circle is one of the simplest constructions on a Smith

chart. It is illustrated in Fig. 8. The diameter WX Y

of the chart through the Euclidean center O of the circle

is drawn intersecting the circle at A and B. ‘The center

0’ of the circle is given by vswr values from the center

of the Smith chart according to the formula

d

vswr~
vswro, = —— )

Vswr.i

or if the circle does not link the origin,

vswro~ = <vswr~ x vswr.i

This is the reverse of the method of clrawi ng a circle de-

scribed in section I.

7 Chodoro\\- et al, op. cd., p. 161.

IV. REFLECTIONS IN LOADED LINES

A direct extension of the methods described above

permits the determination of reflections which may

occur within periodic structures. Such discontinuities

may be the result of faulty manufacture or may be in-

troduced intentionally. The experimental arrangement

will be the same as before. The measurement will now

consist of one set of plunger settings on the near side

of the point of reflection and another set on the far side.

The interpretation of each set will be made as usual;

it is then possible by conventional microwave network

methods to determine the nature of the impedance

transformation which lies between the two sets.

Fig. 8—Illustration of method of locating the
cetiter of a circle.

l“. LossY LOADED LINES

The impedance transformation through a general

10SSY network cannot be described as a rigid d@lace-

wzent in the non-Euclidean system. (All possible dis-

placements already represent nondissipative transfor-

mations.) In the lossy case it is found that the Smith

chart is mapped into a smaller circular region entirely

within the Smith chart (possibly tangent to the bound-

ary). All positions and sizes of the reduced circle are

permitted, subject to the above restrictions. If the re-

duced circle is considered to be a new reduced size

representation of the entire plane, then the Iossy net-

work transformation constitutes a rigid disfilacement

within this region.

We shall consider only the case of sufficiently small

attenuation constant so that the attenuation through a

few cavities may be neglected. We may then assume

that the result of an experiment with a reactive plunger

as described in section I I I will be points 1ying on a circle

(rigorously they fall on a spiral).

The entire analysis procedure described for nonlossy

lines carried over unaltered to this case if we define the

non-Euclidean quantities with respect to the region in-

side the reduced circle (measured for example with the

use of the reactive plunger). The result is that we can

establish the characteristic impedance and propagation
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constant in the region of the reactive plunger, as seen

through the lossy network. We have thus taken care

of the periodic loading aspect of the problem and have

reduced it to the corresponding problem with conven-

tional transmission lines, for which methods of inter-

pretation are available.z Fig. 9 shows a sample meas-

urement for this case.

Fig. 9—Unclosed, regular polygon constructed from data obtained
with a Iossless plunger some distance down a slightly 10SSY
transmission line.

VI. CONCLUSION

We have shown how measurement of the various

network properties of transmission line circuits can be

extended to circuits containing periodically loaded

transmission lines. The use of the non-Euclidean ap-

proach permits the analysis to be made with a mini-

mum of mathematical complexity, and provides a con-

venient conceptual framework.

The methods here described are readily extended but

with considerable complexity to the case where attenua-

tion cannot be neglected even between two successive

cavities.

AEJPENDIX: LOCATION OF TI~E CENTER OF A “POLYGON”

WITH VERTICES AT INFINITY

It will be recalled that the existence of a ‘(regulav”

@olygon was based on physical arguments about the

network under examination. ‘~hese arguments also

show that if a transformation is used to move the center

of the polygon to the center of the Smith chart, then

the figure will possess rotational symmetr}’ about tbe

center in the laboratory coordinates as well as in the

hyperbolic. Under these conditions it is clear at once

from symmetry considerations that the center of the

$olygon is located at the intersection of lines through

the vertices (radii of the Smith chart) which have the

property of being equidistant from th~! two adji~ce~~t

sides of the figure in both the laboratory and the h yper-

bolic coordinates. The problenn is now to obtain a

formula for constructing these Jines even when the

center of the polygon does not happen to be at the center

of the Smith chart.

If the Polygon in question (not necessarily centered

on the Smith chart) is superirnposed on the printed

Smith chart with the vertex in question at Z = ~,

then the two adj scent sides of the ~olygcm will lie along

lines of constant reactance jX. This follows at once,

since the family of constant reactance lines on the

chart are the family of all straigkt lines which can be

drawn through the point Z = ~. Call the reactance

values Xl and X2. Then it is asserted that the curve of

constant reactance equal to (Xl+ Xz)/2! is the desired

line. To see this let us apply the transfcmrnation which

consists of adding a series reactance of —j(Xl +X~)/2.

This is certainly a permissible. transformation since

it is physically realizable and is nondissipati,ve. The re-

sult is lines of constant reactance j(X1 – X2)/2; 0;

j(X2 — Xl) /2. The figure is symmetric about the curve

jX = O, which has all the necessary symmetry properties

to be the desired line through the center of the polygon.

Since this is a property in the hyperbolic geometry it

is invariant under transformation and is the desired

line under all conditions.

The same construction can be applied to the other

vertices to give two or more lines whose intersecticln de-

fines the center of the $olygon.
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