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The Use of Non-Euclidean Geometry in Measurements

of Petiodically Loaded Transmission Lines*
R. L. KYHL}

Summary—The propagation characteristics of periodically loaded
transmission lines can be deduced from impedance measurements
taken with a series of different terminating configurations in a man-
ner analogous to the “nodal shift” method of measuring microwave
junction characteristics. The non-Euclidean properties of impedance
transformations form a particularly simple approach for analyzing
measurements in the case of the loaded line.

I. INTRODUCTION

NUMBER of techniques used in testing the disk-
A loaded guide for the large Stanford linear elec-
tron accelerator! are not only of interest to
workers with similar structures, but also provide an
interesting example of the use of the non-Euclidean
properties of impedance or reflection coefficient charts
which have been described by Deschamps.?

The basic property to be used in this discussion is
that one can define a non-Euclidean geometry on the set
of reflection coefficients or impedances, such that trans-
formation through a nondissipative two-terminal-pair
network constitutes a rigid displacement in this geome-
trv. This concept is of general use in network problems,
as illustrated in footnote reference 2. The ideas pre-
sented are valid for the interpretation of measurements
made at a single frequency. No attempt is made to dis-
cuss frequency dependence. We shall plot our diagrams
on the conventional Smith chart. A few properties of
this representation are listed below. Let words in dtalics
represent the description in the non-Euclidean system.
Deschamps uses the adjective “hyperbolic” to denote
quantities in this system. Strasght lines are circles or-
thogonal to the edge of the chart. Circles are circles
but with the center displaced from the Euclidean center.
The unit of length is proportional to the logarithm of the
voltage standing-wave ratio in the following sense: the
distance between the center of the Smith chart and a
given point is half the logarithm of the vswr (voltage
standing-wave ratio) at the point in question; the
distance between two poinis is the value that would be
obtained by applying any rigid displacement which
moves one of the points to the center of the chart.
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Angles between intersecting straight lines are equal to
the angles between tangents at the point of intersection.
For a description of additional properties of this geome-
try, the reader is referred to the references. The treat-
ment used in this discussion is, from personal prefer-
ence, entirely geometric. Use is freely made of the
theorems of Euclid, care being taken not to use any
that depend on the parallel axiom.

&
"5

AP
(m %
‘4
Y

R

Fig. 1—Regular mosaic in a non-Euclidean geometry.

Many ruler-and-compass coustructions carry over
directly to the non-Euclidean system if practical
methods are available f{or drawing a straight line
through two points, and for drawing a circle with a given
center. Deschamps? gives a useful method for the former
which involves the “projective-chart” as well as the
Smith-chart representation. In the work described in
the present contribution, the lines of constant reactance
on the printed Smith-chart were used as a set of French
curves for drawing straight lines in conjunction with a
tracing table. To draw circles use is made of the defini-
tion of distance. If a circle is to have its center at (vswr)g
and the radius is to be L in (vswr)g, then the points on
the circle will have vswr values lying between (vswr)o X
(vswr)g and (vswr)e= (vswr)z. The extremes will lie
on a FEuclidean diameter of the Smith chart drawn
through the desired center. The two extremes also lie
on a Euclidean diameter of the desired circle which
may now be drawn at once. In order to give a graphic
illustration of this geometry, Fig. 1 shows a mosaic pat-
tern of congruent triangles and regular heptagons.
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II. MEASUREMENTS ON PERIODICALLY LOADED LINES

Fig. 2 shows a typical experimental situation. The
coupling network is some device for connecting the
loaded line to an ordinary transmission line. The
measuring device is usually a probe and slotted section
for measuring standing-wave ratio in a transmission
line, but this is not essential to the argument; the same
considerations would apply to a completely lumped
network. The plunger can be used for terminating
the loaded line in various impedances, either purely re-
active or partly resistive, and generally unknown.
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Fig. 2—A diagram of a typical experimental setup.

Since it is possible to generate in periodic structures
waves which may be defined as “pure traveling waves,”
the entire structure of analysis developed for conven-
tional transmission lines can be taken over directly to
systems containing periodically loaded lines or com-
binations of these with ordinary lines, provided only
that some care is taken in the interpretations.

The purpose of an experiment may be to measure the
propagation constant of the loaded line, to check its uni-
formity, or to measure its characteristic impedance as
seen through the coupling network. The concept of
impedance and reflection coefficient in periodically
loaded transmission lines has been discussed by Slater?
and by Jaynes.*

I1I. GEOMETRIC ANALYSIS

The rigid displacement corresponding to the trans-
formation through one period (one disk) of the loaded
line will have one fixed point at the characteristic im-
pedance Z, of the structure. Within the pass band of
the structure the characteristic impedance will le
inside the Smith chart (rather than at imfinity). The
only possible displacement is then a rotation about Z,.
Transformation through several sections must then
consist of a succession of rotations about the same point.
The total angle of rotation will be N6 where 8 is the
angle of rotation for a single period.

¢ J. C. Slater, “Microwave Electronics,” D. Van Nostrand and
Co., Inc., New York, N. Y., ch. 7; 1950.

4+ E, T. Jaynes, “The concept and measurement of impedance in
periodically loaded waveguides,” J. Appl. Phys., vol. 23, p. 1077;
October, 1952.
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If we plot with Z¢ at the center of the Smith chart the
rotation will appear Euclidean. Consider the experiment
consisting in the placing of a purely reactive, totally re-
flecting termination successively in equivalent positions
in cavities a, b, ¢, d, - + - of the loaded line. The resulting
impedances as seen, for example, in cavity ¢ and plotted
on a Smith chart normalized to the characteristic im-
pedance of the loaded line must appear as in Fig. 3
(though it is not yet clear from the discussion whether
it is possible to make such measurements). Here ¢ is
the phase shift per section in the line. Since the plunger
is purely reactive the reflection coefficient has unit
amplitude and all points lie on the edge of the chart
if there are no losses present. (Loss in the structure will
be considered later.) The factor 2 in 2¢ is the usual one
found on Smith-chart plots.

Fig. 3—Unclosed regular polygon with center at center
of chart, sides of infinite length.

We may now ask what will be observed by an actual
impedance measurement made through a non-lossy
coupling network such as in Fig. 2. The plunger is again
to be purely reactive as in the previous paragraph.
First suppose the coupling network exactly matches
the loaded line to the uniform line. This means by defi-
nition that Z, of the loaded line falls at the center of
the Smith chart. It follows at once that we must again
observe exactly Fig. 3 except for an arbitrary rigid
rotation. In general, however, the coupling will not be
matched. The observed points will fall in the manner
indicated in Fig. 4. The first step in interpreting the
measurements is to determine the position of Zg.
Connect points b, ¢, d, e, - + « with straight lines. These
form a regular polygon (unclosed) in the sense that all
vertices are equivalent and all sides are equivalent. 1t
can be readily seen that it must be a regular polygon
in Fig. 3. Since Fig. 4 represents a rigid displacement
of Fig. 3, the figure must still be a regular polygon. Or-
dinarily, location of the center of a regular polygon is
an elementary geometric construction. Unfortunately
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in this case the verfices are at infinity, the vertex angles
are vanishingly small, and the sides have infinite length.
We construct the straight lines (cZy and Zod) which are
the loci of points equidistant from two adjacent sides of
the polygon. (It may not be at once clear how to per-
form such a construction, or even that the locus in ques-
tion is a straight line. Fortunately, a simple construction
is available.) This may be done on the Smith chart by
superimposing the diagram on the printed Smith chart
so that the vertex under discussion falls at the point
Z = w, The adjacent sides then lie on lines of constant
reactance X. The line of constant X =(X;+X,)/2 is
the desired locus. The proof is left to an appendix.

Fig. 4—Unclosed regular polygon with center displaced from center of
chart. This figure is congruent to Fig. 3.

The intersection of all these loci determines the center
Zy of the polygon. The reflection coefficient of the
coupling network can be read off directly from the posi-
tion of this cemter. Since we have already drawn the
lines connecting the center of the polygon with the ver-
tices, the angles 2¢p can be measured at once as the
angles formed by these lines at the center of the polygon.

If it should happen that point f falls upon point b as
in Fig. 5, then the polygon reduces to a “square” and the
center of the polygon can be determined by drawing the
two diagonals. This is a special case of the type of nodal-
shift® measurement suggested by Deschamps® for use
with uniform lines. It can be used if the loaded line is
transmitting in exactly the 7 /4 or 3w/4 mode.

The 7/2 mode is commonly used in traveling-wave
linear accelerators. The method just described breaks

5 If the reader is disturbed by a regular polygon with vertices at
infinity he may consider this discussion as the limiting case of an
experiment in which the plunger has a slight loss.

8 E. Feenberg, “The relation between nodal positions and stand-
ing wave ratio in a complete trausmission system,” J. Appl. Phys.,
vol. 17, pp. 530-532; June, 1946 and N. Marcuvitz, “On the repre-
sentation and measurement of waveguide discontinuities,” Proc.
IRE, vol. 36, pp. 728-735; June, 1948.
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down at or near this point. Fig. 6 shows measurements
on a periodically loaded line very near the w/2 mode.
In order to determine the Z, point with precision a
second set of plunger positions can be measured giving
rise to points ¥, ¢/, d’, ¢, etc.

e

Fig. 5—Sguare, showing method of locating its
center by drawing the diagonals.

These points determine another polygon which is
also centered about Z,. Unfortunately, in a disk-loaded
structure (at least if the coupling holes are small), there
is one set of points (say, b, ¢, d, e) which is insensitive to
plunger position and corresponds to successive com-

ec

Fig. 6—Typical data obtained in a loaded line operating
near the #/2 mode.

plete detuning of the set of cavities. All other points
(like o', ¢’, d’, ¢’) can be obtained only by positioning the
plunger in the transition region between successive
cavities with great precision. Fig. 6 indicates how the
location of Z, is determined.
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Another method of determining the location of Z,
which may give greater accuracy and is feasible near the
a/2 mode involves the use of a lossy plunger. The points
now fall inside the chart and the difficulties with points
at infinity disappear. The Z, point may be determined as
the intersection of the perpendicular bisectors of the sides
or bisectors of the vertex angles as seen in Fig. 7. Ordinary
“ruler-and-compass” constructions are suitable.

Fig. 7—Unclosed regular polygon constructed from data
obtained with lossy plunger.

This method does not break down at the /2 mode.
It is not as accurate a method for measuring phase
angles. It has been used at Stanford in conjunction with
the totally reflecting plunger.” By a little trial and
error, a lossy plunger has been manufactured with a
vswr of less than 1.1 when placed appropriately in a
cavity of the large Stanford linear accelerator. With
such a plunger the Zy point can be located accurately by
inspection.

Another method of analyzing lossv plunger data
consists of drawing a circle through the data points.
The points must fall on a circle because they form a
regular polygon. A circle is always also a circle in the
Euclidean plane so the construction can be made by
conventional methods. The center of the circle coincides
with the center of the polygon. Location of the center of a
circle is one of the simplest constructions on a Smith
chart. It is illustrated in Fig. 8. The diameter WXV
of the chart through the Euclidean center O of the circle
is drawn intersecting the circle at 4 and B. The center
O’ of the circle is given by vswr values from the center
of the Smith chart according to the formula

VSWIB

-

VSWTI4

VSWTIgr —

or if the circie does not link the origin,

VSWIor = A/vswrg X VSWrIy

This is the reverse of the method of drawing a circle de-
scribed in section 1.

" Chodorow et al, op. cit., p. 161.
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1V. REFLECTIONS IN LOADED LINES

A direct extension of the methods described above
permits the determination of reflections which may
occur within periodic structures. Such discontinuities
may be the result of faulty manufacture or may be in-
troduced intentionally. The experimental arrangement
will be the same as before. The measurement will now
consist of one set of plunger settings on the near side
of the point of reflection and another set on the far side.
The interpretation of each set will be made as usual;
it is then possible by conventional microwave network
methods to determine the nature of the impedance
transformation which lies between the two sets.

w

Fig. 8—Illustration of method of locating the
center of a circle.

V. Lossy LoapEDp LINES

The impedance transformation through a general
lossy network cannot be described as a rigid displace-
ment in the non-Euclidean system. (All possible dis-
placements already represent nondissipative transfor-
mations.) In the lossy case it is found that the Smith
chart is mapped into a smaller circular region entirely
within the Smith chart (possibly tangent to the bound-
ary). All positions and sizes of the reduced circle are
permitted, subject to the above restrictions. If the re-
duced circle is considered to be a new reduced size
representation of the entire plane, then the lossy net-
work transformation constitutes a rigid displacement
within this region.

We shall consider only the case of sufficiently small
attenuation constant so that the attenuation through a
few cavities may be neglected. We may then assume
that the result of an experiment with a reactive plunger
as described in section I1I will be points lying on a circle
(rigorously they fall on a spiral).

The entire analysis procedure described for nonlossy
lines carried over unaltered to this case if we define the
non-Euclidean quantities with respect to the region in-
side the reduced circle (measured for example with the
use of the reactive plunger). The result is that we can
establish the characteristic impedance and propagation
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constant in the region of the reactive plunger, as seen
through the lossy network. We have thus taken care
of the periodic loading aspect of the problem and have
reduced it to the corresponding problem with conven-
tional transmission lines, for which methods of inter-
pretation are available.? Fig. 9 shows a sample meas-
urement for this case.
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Fig. 9—VUnclosed, regular polygon constructed from data obtained
with a lossless plunger some distance down a slightly lossy
transmission line,

VI. CoNCLUSION

We have shown how measurement of the various
network properties of transmission line circuits can be
extended to circuits containing periodically loaded
transmission lines. The use of the non-Euclidean ap-
proach permits the analysis to be made with a mini-
mum of mathematical complexity, and provides a con-
venient conceptual framework.

The methods here described are readily extended but
with considerable complexity to the case where attenua-
tion cannot be neglected even between two successive
cavities.

ArpENDIX: LocaTiON OoF THE CENTER OF A “PoLycoN”
WITH VERTICES AT INFINITY

It will be recalled that the existence of a “regular”
polygon was based on physical arguments about the
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network under examination. These arguments also
show that if a transformation is used to move the center
of the polygon to the center of the Smith chart, then
the figure will possess rotational symmetry about the
center in the laboratory coordinates as well as in the
hyperbolic. Under these conditions it is clear at once
from symmetry considerations that the cenfer of the
polygon is located at the intersection of limes through
the vertices (radii of the Smith chart) which have the
property of being equidistant from the two adjacent
sides of the figure in both the laboratory and the hyper-
bolic coordinates. The problem is now to obtain a
formula for constructing these limes even when the
center of the polygon does not happen to be at the center
of the Smith chart.

If the polygon in question (not necessarily centered
on the Smith chart) is superimposed on the printed
Smith chart with the vertex in question at Z= =,
then the two adjacent sides of the polygon will lie along
lines of constant reactance jX. This follows at once,
since the family of constant reactance lines on the
chart are the family of all straight lines which can be
drawn through the point Z= «. Call the reactance
values X; and X,. Then it is asserted that the curve of
constant reactance equal to (X;+X;)/2 is the desired
line. To see this let us apply the transformation which
consists of adding a series reactance of —j(X1+Xa2)/2.
This is certainly a permissible transformation since
it is physically realizable and is nondissipative. The re-
sult is lines of constant reactance j(X;—X»)/2; 0;
j{Xs—X,)/2. The figure is symmetric about the curve
jX =0, which has all the necessary symmetry properties
to be the desired line through the center of the polygon.
Since this is a property in the hyperbolic geometry it
is invariant under transformation and is the desired
line under all conditions.

The same construction can be applied to the other
vertices to give two or more lines whose intersection de-
fines the center of the polygon.
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